API

Learn more about the details of some of the most used APIs: prediction, vector-upsert

Refer to API Reference for full list of public APIs

Prediction

Using Python/TS Library

Flowise provides 2 libraries:

from flowise import Flowise, PredictionData

def test_non_streaming():
    client = Flowise()

    # Test non-streaming prediction
    completion = client.create_prediction(
        PredictionData(
            chatflowId="<chatflow-id>",
            question="What is the capital of France?",
            streaming=False
        )
    )

    # Process and print the response
    for response in completion:
        print("Non-streaming response:", response)

def test_streaming():
    client = Flowise()

    # Test streaming prediction
    completion = client.create_prediction(
        PredictionData(
            chatflowId="<chatflow-id>",
            question="Tell me a joke!",
            streaming=True
        )
    )

    # Process and print each streamed chunk
    print("Streaming response:")
    for chunk in completion:
        print(chunk)


if __name__ == "__main__":
    # Run non-streaming test
    test_non_streaming()

    # Run streaming test
    test_streaming()

Override Config

Override existing input configuration of the chatflow with overrideConfig property.

import requests
API_URL = "http://localhost:3000/api/v1/prediction/&#x3C;chatlfowid>"

def query(payload):
    response = requests.post(API_URL, json=payload)
    return response.json()
    
output = query({
    "question": "Hey, how are you?",
    "overrideConfig": {
        "sessionId": "123",
        "returnSourceDocuments": true
    }
})

History

You can prepend history messages to give some context to LLM. For example, if you want the LLM to remember user's name:

import requests
API_URL = "http://localhost:3000/api/v1/prediction/&#x3C;chatlfowid>"

def query(payload):
    response = requests.post(API_URL, json=payload)
    return response.json()
    
output = query({
    "question": "Hey, how are you?",
    "history": [
        {
            "role": "apiMessage",
            "content": "Hello how can I help?"
        },
        {
            "role": "userMessage",
            "content": "Hi my name is Brian"
        },
        {
            "role": "apiMessage",
            "content": "Hi Brian, how can I help?"
        },
    ]
})

Persists Memory

You can pass a sessionId to persists the state of the conversation, so the every subsequent API calls will have context about previous conversation. Otherwise, a new session will be generated each time.

import requests
API_URL = "http://localhost:3000/api/v1/prediction/&#x3C;chatlfowid>"

def query(payload):
    response = requests.post(API_URL, json=payload)
    return response.json()
    
output = query({
    "question": "Hey, how are you?",
    "overrideConfig": {
        "sessionId": "123"
    } 
})

Variables

Pass variables in the API to be used by the nodes in the flow. See more: Variables

import requests
API_URL = "http://localhost:3000/api/v1/prediction/&#x3C;chatlfowid>"

def query(payload):
    response = requests.post(API_URL, json=payload)
    return response.json()
    
output = query({
    "question": "Hey, how are you?",
    "overrideConfig": {
        "vars": {
            "foo": "bar"
        }
    }
})

Image Uploads

When Allow Image Upload is enabled, images can be uploaded from chat interface.

import requests
API_URL = "http://localhost:3000/api/v1/prediction/&#x3C;chatlfowid>"

def query(payload):
    response = requests.post(API_URL, json=payload)
    return response.json()
    
output = query({
    "question": "Can you describe the image?",
    "uploads": [
        {
            "data": '', # base64 string or url
            "type": 'file', # file | url
            "name": 'Flowise.png',
            "mime": 'image/png'
        }
    ]
})

Speech to Text

When Speech to Text is enabled, users can speak directly into microphone and speech will be transcribed into text.

import requests
API_URL = "http://localhost:3000/api/v1/prediction/&#x3C;chatlfowid>"

def query(payload):
    response = requests.post(API_URL, json=payload)
    return response.json()
    
output = query({
    "uploads": [
        {
            "data": 'data:audio/webm;codecs=opus;base64,GkXf', #base64 string
            "type": 'audio',
            "name": 'audio.wav',
            "mime": 'audio/webm'
        }
    ]
})

Vector Upsert API

Document Loaders with File Upload

Some document loaders in Flowise allow user to upload files:

If the flow contains Document Loaders with Upload File functionality, the API looks slightly different. Instead of passing body as JSON, form data is being used. This allows you to send files to the API.

Make sure the sent file type is compatible with the expected file type from document loader. For example, if a PDF File Loader is being used, you should only send .pdf files.

To avoid having separate loaders for different file types, we recommend to use File Loader

import requests

API_URL = "http://localhost:3000/api/v1/vector/upsert/<chatlfowid>"

# use form data to upload files
form_data = {
    "files": ('state_of_the_union.txt', open('state_of_the_union.txt', 'rb'))
}

body_data = {
    "returnSourceDocuments": True
}

def query(form_data):
    response = requests.post(API_URL, files=form_data, data=body_data)
    print(response)
    return response.json()

output = query(form_data)
print(output)

Document Loaders without Upload

For other Document Loaders nodes without Upload File functionality, the API body is in JSON format similar to Prediction API.

import requests

API_URL = "http://localhost:3000/api/v1/vector/upsert/<chatlfowid>"

def query(form_data):
    response = requests.post(API_URL, json=payload)
    print(response)
    return response.json()

output = query({
    "overrideConfig": { # optional
        "returnSourceDocuments": true
    }
})
print(output)

Video Tutorials

Those video tutorials cover the main use cases for implementing the Flowise API.

Last updated