FlowiseAI
English
English
  • Introduction
  • Get Started
  • Contribution Guide
    • Building Node
  • API Reference
    • Assistants
    • Attachments
    • Chat Message
    • Chatflows
    • Document Store
    • Feedback
    • Leads
    • Ping
    • Prediction
    • Tools
    • Upsert History
    • Variables
    • Vector Upsert
  • Using Flowise
    • Agentflows
      • Multi-Agents
      • Sequential Agents
        • Video Tutorials
    • API
    • Analytic
      • Arize
      • Langfuse
      • Lunary
      • Opik
      • Phoenix
    • Document Stores
    • Embed
    • Monitoring
    • Streaming
    • Telemetry
    • Uploads
    • Variables
    • Workspaces
    • Evaluations
  • Configuration
    • Auth
      • App Level
      • Chatflow Level
    • Databases
    • Deployment
      • AWS
      • Azure
      • Alibaba Cloud
      • Digital Ocean
      • Elestio
      • GCP
      • Hugging Face
      • Kubernetes using Helm
      • Railway
      • Render
      • Replit
      • RepoCloud
      • Sealos
      • Zeabur
    • Environment Variables
    • Rate Limit
    • Running Flowise behind company proxy
    • SSO
    • Running Flowise using Queue
    • Running in Production
  • Integrations
    • LangChain
      • Agents
        • Airtable Agent
        • AutoGPT
        • BabyAGI
        • CSV Agent
        • Conversational Agent
        • Conversational Retrieval Agent
        • MistralAI Tool Agent
        • OpenAI Assistant
          • Threads
        • OpenAI Function Agent
        • OpenAI Tool Agent
        • ReAct Agent Chat
        • ReAct Agent LLM
        • Tool Agent
        • XML Agent
      • Cache
        • InMemory Cache
        • InMemory Embedding Cache
        • Momento Cache
        • Redis Cache
        • Redis Embeddings Cache
        • Upstash Redis Cache
      • Chains
        • GET API Chain
        • OpenAPI Chain
        • POST API Chain
        • Conversation Chain
        • Conversational Retrieval QA Chain
        • LLM Chain
        • Multi Prompt Chain
        • Multi Retrieval QA Chain
        • Retrieval QA Chain
        • Sql Database Chain
        • Vectara QA Chain
        • VectorDB QA Chain
      • Chat Models
        • AWS ChatBedrock
        • Azure ChatOpenAI
        • NVIDIA NIM
        • ChatAnthropic
        • ChatCohere
        • Chat Fireworks
        • ChatGoogleGenerativeAI
        • Google VertexAI
        • ChatHuggingFace
        • ChatLocalAI
        • ChatMistralAI
        • IBM Watsonx
        • ChatOllama
        • ChatOpenAI
        • ChatTogetherAI
        • GroqChat
      • Document Loaders
        • API Loader
        • Airtable
        • Apify Website Content Crawler
        • Cheerio Web Scraper
        • Confluence
        • Csv File
        • Custom Document Loader
        • Document Store
        • Docx File
        • File Loader
        • Figma
        • FireCrawl
        • Folder with Files
        • GitBook
        • Github
        • Json File
        • Json Lines File
        • Notion Database
        • Notion Folder
        • Notion Page
        • PDF Files
        • Plain Text
        • Playwright Web Scraper
        • Puppeteer Web Scraper
        • S3 File Loader
        • SearchApi For Web Search
        • SerpApi For Web Search
        • Spider Web Scraper/Crawler
        • Text File
        • Unstructured File Loader
        • Unstructured Folder Loader
        • VectorStore To Document
      • Embeddings
        • AWS Bedrock Embeddings
        • Azure OpenAI Embeddings
        • Cohere Embeddings
        • Google GenerativeAI Embeddings
        • Google VertexAI Embeddings
        • HuggingFace Inference Embeddings
        • LocalAI Embeddings
        • MistralAI Embeddings
        • Ollama Embeddings
        • OpenAI Embeddings
        • OpenAI Embeddings Custom
        • TogetherAI Embedding
        • VoyageAI Embeddings
      • LLMs
        • AWS Bedrock
        • Azure OpenAI
        • Cohere
        • GoogleVertex AI
        • HuggingFace Inference
        • Ollama
        • OpenAI
        • Replicate
      • Memory
        • Buffer Memory
        • Buffer Window Memory
        • Conversation Summary Memory
        • Conversation Summary Buffer Memory
        • DynamoDB Chat Memory
        • MongoDB Atlas Chat Memory
        • Redis-Backed Chat Memory
        • Upstash Redis-Backed Chat Memory
        • Zep Memory
      • Moderation
        • OpenAI Moderation
        • Simple Prompt Moderation
      • Output Parsers
        • CSV Output Parser
        • Custom List Output Parser
        • Structured Output Parser
        • Advanced Structured Output Parser
      • Prompts
        • Chat Prompt Template
        • Few Shot Prompt Template
        • Prompt Template
      • Record Managers
      • Retrievers
        • Extract Metadata Retriever
        • Custom Retriever
        • Cohere Rerank Retriever
        • Embeddings Filter Retriever
        • HyDE Retriever
        • LLM Filter Retriever
        • Multi Query Retriever
        • Prompt Retriever
        • Reciprocal Rank Fusion Retriever
        • Similarity Score Threshold Retriever
        • Vector Store Retriever
        • Voyage AI Rerank Retriever
      • Text Splitters
        • Character Text Splitter
        • Code Text Splitter
        • Html-To-Markdown Text Splitter
        • Markdown Text Splitter
        • Recursive Character Text Splitter
        • Token Text Splitter
      • Tools
        • BraveSearch API
        • Calculator
        • Chain Tool
        • Chatflow Tool
        • Custom Tool
        • Exa Search
        • Google Custom Search
        • OpenAPI Toolkit
        • Code Interpreter by E2B
        • Read File
        • Request Get
        • Request Post
        • Retriever Tool
        • SearchApi
        • SearXNG
        • Serp API
        • Serper
        • Tavily
        • Web Browser
        • Write File
      • Vector Stores
        • AstraDB
        • Chroma
        • Couchbase
        • Elastic
        • Faiss
        • In-Memory Vector Store
        • Milvus
        • MongoDB Atlas
        • OpenSearch
        • Pinecone
        • Postgres
        • Qdrant
        • Redis
        • SingleStore
        • Supabase
        • Upstash Vector
        • Vectara
        • Weaviate
        • Zep Collection - Open Source
        • Zep Collection - Cloud
    • LiteLLM Proxy
    • LlamaIndex
      • Agents
        • OpenAI Tool Agent
        • Anthropic Tool Agent
      • Chat Models
        • AzureChatOpenAI
        • ChatAnthropic
        • ChatMistral
        • ChatOllama
        • ChatOpenAI
        • ChatTogetherAI
        • ChatGroq
      • Embeddings
        • Azure OpenAI Embeddings
        • OpenAI Embedding
      • Engine
        • Query Engine
        • Simple Chat Engine
        • Context Chat Engine
        • Sub-Question Query Engine
      • Response Synthesizer
        • Refine
        • Compact And Refine
        • Simple Response Builder
        • Tree Summarize
      • Tools
        • Query Engine Tool
      • Vector Stores
        • Pinecone
        • SimpleStore
    • Utilities
      • Custom JS Function
      • Set/Get Variable
      • If Else
      • Sticky Note
    • External Integrations
      • Zapier Zaps
  • Migration Guide
    • Cloud Migration
    • v1.3.0 Migration Guide
    • v1.4.3 Migration Guide
    • v2.1.4 Migration Guide
  • Use Cases
    • Calling Children Flows
    • Calling Webhook
    • Interacting with API
    • Multiple Documents QnA
    • SQL QnA
    • Upserting Data
    • Web Scrape QnA
  • Flowise
    • Flowise GitHub
    • Flowise Cloud
Powered by GitBook
On this page
  • Install Git
  • Structure
  • Create Calculator Tool
  • Define Class
  • Finishing
  • Build and Run
Edit on GitHub
  1. Contribution Guide

Building Node

PreviousContribution GuideNextAPI Reference

Last updated 3 months ago

Install Git

First, install Git and clone Flowise repository. You can follow the steps from the guide.

Structure

Flowise separate every node integration under the folder packages/components/nodes. Let's try to create a simple Tool!

Create Calculator Tool

Create a new folder named Calculator under the packages/components/nodes/tools folder. Then create a new file named Calculator.ts. Inside the file, we will first write the base class.

import { INode } from '../../../src/Interface'
import { getBaseClasses } from '../../../src/utils'

class Calculator_Tools implements INode {
    label: string
    name: string
    version: number
    description: string
    type: string
    icon: string
    category: string
    author: string
    baseClasses: string[]

    constructor() {
        this.label = 'Calculator'
        this.name = 'calculator'
        this.version = 1.0
        this.type = 'Calculator'
        this.icon = 'calculator.svg'
        this.category = 'Tools'
        this.author = 'Your Name'
        this.description = 'Perform calculations on response'
        this.baseClasses = [this.type, ...getBaseClasses(Calculator)]
    }
}

module.exports = { nodeClass: Calculator_Tools }

Every node will implements the INode base class. Breakdown of what each property means:

Property
Description

label

The name of the node that appears on the UI

name

The name that is used by code. Must be camelCase

version

Version of the node

type

Usually the same as label. To define which node can be connected to this specific type on UI

icon

Icon of the node

category

Category of the node

author

Creator of the node

description

Node description

baseClasses

The base classes from the node, since a node can extends from a base component. Used to define which node can be connected to this node on UI

Define Class

Now the component class is partially finished, we can go ahead to define the actual Tool class, in this case - Calculator.

Create a new file under the same Calculator folder, and named as core.ts

import { Parser } from "expr-eval"
import { Tool } from "@langchain/core/tools"

export class Calculator extends Tool {
    name = "calculator"
    description = `Useful for getting the result of a math expression. The input to this tool should be a valid mathematical expression that could be executed by a simple calculator.`
 
    async _call(input: string) {
        try {
            return Parser.evaluate(input).toString()
        } catch (error) {
            return "I don't know how to do that."
        }
    }
}

Finishing

Head back to the Calculator.ts file, we can finish this up by having the async init function. In this function, we will initialize the Calculator class we created above. When the flow is being executed, the init function in each node will be called, and the _call function will be executed when LLM decides to call this tool.

import { INode } from '../../../src/Interface'
import { getBaseClasses } from '../../../src/utils'
import { Calculator } from './core'

class Calculator_Tools implements INode {
    label: string
    name: string
    version: number
    description: string
    type: string
    icon: string
    category: string
    author: string
    baseClasses: string[]

    constructor() {
        this.label = 'Calculator'
        this.name = 'calculator'
        this.version = 1.0
        this.type = 'Calculator'
        this.icon = 'calculator.svg'
        this.category = 'Tools'
        this.author = 'Your Name'
        this.description = 'Perform calculations on response'
        this.baseClasses = [this.type, ...getBaseClasses(Calculator)]
    }
    
 
    async init() {
        return new Calculator()
    }
}

module.exports = { nodeClass: Calculator_Tools }

Build and Run

In the .env file inside packages/server, create a new env variable:

SHOW_COMMUNITY_NODES=true

Now we can use pnpm build and pnpm start to bring the component alive!

Get Started