Streamlit
Python SDK can be used to create a Streamlit app:
import streamlit as st
from flowise import Flowise, PredictionData
import json
# Flowise app base url
base_url = st.secrets["APP_URL"] or "https://your-flowise-url.com"
# Chatflow/Agentflow ID
flow_id = st.secrets["FLOW_ID"] or "abc"
# Show title and description.
st.title("💬 Flowise Streamlit Chat")
st.write(
"This is a simple chatbot that uses Flowise Python SDK"
)
# Create a Flowise client.
client = Flowise(base_url=base_url)
# Create a session state variable to store the chat messages. This ensures that the
# messages persist across reruns.
if "messages" not in st.session_state:
st.session_state.messages = []
# Display the existing chat messages via `st.chat_message`.
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def generate_response(prompt: str):
print('generating response')
completion = client.create_prediction(
PredictionData(
chatflowId=flow_id,
question=prompt,
overrideConfig={
"sessionId": "session1234"
},
streaming=True
)
)
for chunk in completion:
print(chunk)
parsed_chunk = json.loads(chunk)
if (parsed_chunk['event'] == 'token' and parsed_chunk['data'] != ''):
yield str(parsed_chunk['data'])
# Create a chat input field to allow the user to enter a message. This will display
# automatically at the bottom of the page.
if prompt := st.chat_input("What is up?"):
# Store and display the current prompt.
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Stream the response to the chat using `st.write_stream`, then store it in
# session state.
with st.chat_message("assistant"):
response = generate_response(prompt)
full_response = st.write_stream(response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
Last updated