FlowiseAI
English
English
  • Introduction
  • Get Started
  • Contribution Guide
    • Building Node
  • API Reference
    • Assistants
    • Attachments
    • Chat Message
    • Chatflows
    • Document Store
    • Feedback
    • Leads
    • Ping
    • Prediction
    • Tools
    • Upsert History
    • Variables
    • Vector Upsert
  • CLI Reference
    • User
  • Using Flowise
    • Agentflow V2
    • Agentflow V1 (Deprecating)
      • Multi-Agents
      • Sequential Agents
        • Video Tutorials
    • Prediction
    • Streaming
    • Document Stores
    • Upsertion
    • Analytic
      • Arize
      • Langfuse
      • Lunary
      • Opik
      • Phoenix
    • Monitoring
    • Embed
    • Uploads
    • Variables
    • Workspaces
    • Evaluations
  • Configuration
    • Auth
      • Application
      • Flows
    • Databases
    • Deployment
      • AWS
      • Azure
      • Alibaba Cloud
      • Digital Ocean
      • Elestio
      • GCP
      • Hugging Face
      • Kubernetes using Helm
      • Railway
      • Render
      • Replit
      • RepoCloud
      • Sealos
      • Zeabur
    • Environment Variables
    • Rate Limit
    • Running Flowise behind company proxy
    • SSO
    • Running Flowise using Queue
    • Running in Production
  • Integrations
    • LangChain
      • Agents
        • Airtable Agent
        • AutoGPT
        • BabyAGI
        • CSV Agent
        • Conversational Agent
        • Conversational Retrieval Agent
        • MistralAI Tool Agent
        • OpenAI Assistant
          • Threads
        • OpenAI Function Agent
        • OpenAI Tool Agent
        • ReAct Agent Chat
        • ReAct Agent LLM
        • Tool Agent
        • XML Agent
      • Cache
        • InMemory Cache
        • InMemory Embedding Cache
        • Momento Cache
        • Redis Cache
        • Redis Embeddings Cache
        • Upstash Redis Cache
      • Chains
        • GET API Chain
        • OpenAPI Chain
        • POST API Chain
        • Conversation Chain
        • Conversational Retrieval QA Chain
        • LLM Chain
        • Multi Prompt Chain
        • Multi Retrieval QA Chain
        • Retrieval QA Chain
        • Sql Database Chain
        • Vectara QA Chain
        • VectorDB QA Chain
      • Chat Models
        • AWS ChatBedrock
        • Azure ChatOpenAI
        • NVIDIA NIM
        • ChatAnthropic
        • ChatCohere
        • Chat Fireworks
        • ChatGoogleGenerativeAI
        • Google VertexAI
        • ChatHuggingFace
        • ChatLocalAI
        • ChatMistralAI
        • IBM Watsonx
        • ChatOllama
        • ChatOpenAI
        • ChatTogetherAI
        • GroqChat
      • Document Loaders
        • Airtable
        • API Loader
        • Apify Website Content Crawler
        • BraveSearch Loader
        • Cheerio Web Scraper
        • Confluence
        • Csv File
        • Custom Document Loader
        • Document Store
        • Docx File
        • Epub File
        • Figma
        • File
        • FireCrawl
        • Folder
        • GitBook
        • Github
        • Google Drive
        • Google Sheets
        • Jira
        • Json File
        • Json Lines File
        • Microsoft Excel
        • Microsoft Powerpoint
        • Microsoft Word
        • Notion
        • PDF Files
        • Plain Text
        • Playwright Web Scraper
        • Puppeteer Web Scraper
        • S3 File Loader
        • SearchApi For Web Search
        • SerpApi For Web Search
        • Spider - web search & crawler
        • Text File
        • Unstructured File Loader
        • Unstructured Folder Loader
      • Embeddings
        • AWS Bedrock Embeddings
        • Azure OpenAI Embeddings
        • Cohere Embeddings
        • Google GenerativeAI Embeddings
        • Google VertexAI Embeddings
        • HuggingFace Inference Embeddings
        • LocalAI Embeddings
        • MistralAI Embeddings
        • Ollama Embeddings
        • OpenAI Embeddings
        • OpenAI Embeddings Custom
        • TogetherAI Embedding
        • VoyageAI Embeddings
      • LLMs
        • AWS Bedrock
        • Azure OpenAI
        • Cohere
        • GoogleVertex AI
        • HuggingFace Inference
        • Ollama
        • OpenAI
        • Replicate
      • Memory
        • Buffer Memory
        • Buffer Window Memory
        • Conversation Summary Memory
        • Conversation Summary Buffer Memory
        • DynamoDB Chat Memory
        • MongoDB Atlas Chat Memory
        • Redis-Backed Chat Memory
        • Upstash Redis-Backed Chat Memory
        • Zep Memory
      • Moderation
        • OpenAI Moderation
        • Simple Prompt Moderation
      • Output Parsers
        • CSV Output Parser
        • Custom List Output Parser
        • Structured Output Parser
        • Advanced Structured Output Parser
      • Prompts
        • Chat Prompt Template
        • Few Shot Prompt Template
        • Prompt Template
      • Record Managers
      • Retrievers
        • Extract Metadata Retriever
        • Custom Retriever
        • Cohere Rerank Retriever
        • Embeddings Filter Retriever
        • HyDE Retriever
        • LLM Filter Retriever
        • Multi Query Retriever
        • Prompt Retriever
        • Reciprocal Rank Fusion Retriever
        • Similarity Score Threshold Retriever
        • Vector Store Retriever
        • Voyage AI Rerank Retriever
      • Text Splitters
        • Character Text Splitter
        • Code Text Splitter
        • Html-To-Markdown Text Splitter
        • Markdown Text Splitter
        • Recursive Character Text Splitter
        • Token Text Splitter
      • Tools
        • BraveSearch API
        • Calculator
        • Chain Tool
        • Chatflow Tool
        • Custom Tool
        • Exa Search
        • Gmail
        • Google Calendar
        • Google Custom Search
        • Google Drive
        • Google Sheets
        • Microsoft Outlook
        • Microsoft Teams
        • OpenAPI Toolkit
        • Code Interpreter by E2B
        • Read File
        • Request Get
        • Request Post
        • Retriever Tool
        • SearchApi
        • SearXNG
        • Serp API
        • Serper
        • Tavily
        • Web Browser
        • Write File
      • Vector Stores
        • AstraDB
        • Chroma
        • Couchbase
        • Elastic
        • Faiss
        • In-Memory Vector Store
        • Milvus
        • MongoDB Atlas
        • OpenSearch
        • Pinecone
        • Postgres
        • Qdrant
        • Redis
        • SingleStore
        • Supabase
        • Upstash Vector
        • Vectara
        • Weaviate
        • Zep Collection - Open Source
        • Zep Collection - Cloud
    • LiteLLM Proxy
    • LlamaIndex
      • Agents
        • OpenAI Tool Agent
        • Anthropic Tool Agent
      • Chat Models
        • AzureChatOpenAI
        • ChatAnthropic
        • ChatMistral
        • ChatOllama
        • ChatOpenAI
        • ChatTogetherAI
        • ChatGroq
      • Embeddings
        • Azure OpenAI Embeddings
        • OpenAI Embedding
      • Engine
        • Query Engine
        • Simple Chat Engine
        • Context Chat Engine
        • Sub-Question Query Engine
      • Response Synthesizer
        • Refine
        • Compact And Refine
        • Simple Response Builder
        • Tree Summarize
      • Tools
        • Query Engine Tool
      • Vector Stores
        • Pinecone
        • SimpleStore
    • Utilities
      • Custom JS Function
      • Set/Get Variable
      • If Else
      • Sticky Note
    • External Integrations
      • Zapier Zaps
      • Open WebUI
      • Streamlit
  • Migration Guide
    • Cloud Migration
    • v1.3.0 Migration Guide
    • v1.4.3 Migration Guide
    • v2.1.4 Migration Guide
  • Tutorials
    • RAG
    • Agentic RAG
    • SQL Agent
    • Agent as Tool
    • Interacting with API
    • Tools & MCP
    • Structured Output
    • Human In The Loop
    • Deep Research
    • Customer Support
    • Supervisor and Workers
  • Flowise
    • Flowise GitHub
    • Flowise Cloud
Powered by GitBook
On this page
  • Image
  • Audio
  • Files
  • RAG File Uploads
  • Full File Uploads
  • Difference between Full & RAG Uploads
Edit on GitHub
  1. Using Flowise

Uploads

Learn how to use upload images, audio, and other files

PreviousEmbedNextVariables

Last updated 3 months ago

Flowise lets you upload images, audio, and other files from the chat. In this section, you'll learn how to enable and use these features.

Image

Certain chat models allow you to input images. Always refer to the official documentation of the LLM to confirm if the model supports image input.

  • ChatOpenAI

  • AzureChatOpenAI

  • ChatAnthropic

  • AWSChatBedrock

  • ChatGoogleGenerativeAI

  • ChatOllama

  • Google Vertex AI

Image processing only works with certain chains/agents in Chatflow.

LLMChain, Conversation Chain, ReAct Agent, Conversational Agent, Tool Agent

If you enable Allow Image Upload, you can upload images from the chat interface.

To upload images with the API:

import requests
API_URL = "http://localhost:3000/api/v1/prediction/<chatflowid>"

def query(payload):
    response = requests.post(API_URL, json=payload)
    return response.json()
    
output = query({
    "question": "Can you describe the image?",
    "uploads": [
        {
            "data": "", # base64 string or url
            "type": "file", # file | url
            "name": "Flowise.png",
            "mime": "image/png"
        }
    ]
})
async function query(data) {
    const response = await fetch(
        "http://localhost:3000/api/v1/prediction/<chatflowid>",
        {
            method: "POST",
            headers: {
                "Content-Type": "application/json"
            },
            body: JSON.stringify(data)
        }
    );
    const result = await response.json();
    return result;
}

query({
    "question": "Can you describe the image?",
    "uploads": [
        {
            "data": "", //base64 string or url
            "type": "file", // file | url
            "name": "Flowise.png",
            "mime": "image/png"
        }
    ]
}).then((response) => {
    console.log(response);
});

Audio

In the Chatflow Configuration, you can select a speech-to-text module. Supported integrations include:

  • OpenAI

  • AssemblyAI

  • LocalAI

When this is enabled, users can speak directly into the microphone. Their speech is be transcribed into text.

To upload audio with the API:

import requests
API_URL = "http://localhost:3000/api/v1/prediction/<chatflowid>"

def query(payload):
    response = requests.post(API_URL, json=payload)
    return response.json()
    
output = query({
    "uploads": [
        {
            "data": "data:audio/webm;codecs=opus;base64,GkXf", # base64 string
            "type": "audio",
            "name": "audio.wav",
            "mime": "audio/webm"
        }
    ]
})
async function query(data) {
    const response = await fetch(
        "http://localhost:3000/api/v1/prediction/<chatflowid>",
        {
            method: "POST",
            headers: {
                "Content-Type": "application/json"
            },
            body: JSON.stringify(data)
        }
    );
    const result = await response.json();
    return result;
}

query({
    "uploads": [
        {
            "data": "data:audio/webm;codecs=opus;base64,GkXf", // base64 string
            "type": "audio",
            "name": "audio.wav",
            "mime": "audio/webm"
        }
    ]
}).then((response) => {
    console.log(response);
});

Files

You can upload files in two ways:

  • Retrieval augmented generation (RAG) file uploads

  • Full file uploads

When both options are on, full file uploads take precedence.

RAG File Uploads

You can upsert uploaded files on the fly to the vector store. To enable file uploads, make sure you meet these prerequisites:

  • You must include a vector store that supports file uploads in the chatflow.

    • Pinecone

    • Milvus

    • Postgres

    • Qdrant

    • Upstash

  • If you have multiple vector stores in a chatflow, you can only turn on file upload for one vector store at a time.

  • You must connect at least one document loader node to the vector store's document input.

  • Supported document loaders:

    • CSV File

    • Docx File

    • Json File

    • Json Lines File

    • PDF File

    • Text File

    • Unstructured File

You can upload one or more files in the chat:

Here's how it works:

  1. The metadata for uploaded files is updated with the chatId.

  2. This associates the file with the chatId.

  3. When querying, an OR filter applies:

  • Metadata contains flowise_chatId, and the value is the current chat session ID

  • Metadata does not contain flowise_chatId

An example of a vector embedding upserted on Pinecone:

To do this with the API, follow these two steps:

  1. Use the Vector Upsert API with formData and chatId:

import requests

API_URL = "http://localhost:3000/api/v1/vector/upsert/<chatflowid>"

# Use form data to upload files
form_data = {
    "files": ("state_of_the_union.txt", open("state_of_the_union.txt", "rb"))
}

body_data = {
    "chatId": "some-session-id"
}

def query(form_data):
    response = requests.post(API_URL, files=form_data, data=body_data)
    print(response)
    return response.json()

output = query(form_data)
print(output)
// Use FormData to upload files
let formData = new FormData();
formData.append("files", input.files[0]);
formData.append("chatId", "some-session-id");

async function query(formData) {
    const response = await fetch(
        "http://localhost:3000/api/v1/vector/upsert/<chatflowid>",
        {
            method: "POST",
            body: formData
        }
    );
    const result = await response.json();
    return result;
}

query(formData).then((response) => {
    console.log(response);
});
  1. Use the Prediction API with uploads and the chatId from step 1:

import requests
API_URL = "http://localhost:3000/api/v1/prediction/<chatflowid>"

def query(payload):
    response = requests.post(API_URL, json=payload)
    return response.json()
    
output = query({
    "question": "What is the speech about?",
    "chatId": "same-session-id-from-step-1",
    "uploads": [
        {
            "data": "data:text/plain;base64,TWFkYWwcy4=",
            "type": "file:rag",
            "name": "state_of_the_union.txt",
            "mime": "text/plain"
        }
    ]
})
async function query(data) {
    const response = await fetch(
        "http://localhost:3000/api/v1/prediction/<chatflowid>",
        {
            method: "POST",
            headers: {
                "Content-Type": "application/json"
            },
            body: JSON.stringify(data)
        }
    );
    const result = await response.json();
    return result;
}

query({
    "question": "What is the speech about?",
    "chatId": "same-session-id-from-step-1",
    "uploads": [
        {
            "data": "data:text/plain;base64,TWFkYWwcy4=",
            "type": "file:rag",
            "name": "state_of_the_union.txt",
            "mime": "text/plain"
        }
    ]
}).then((response) => {
    console.log(response);
});

Full File Uploads

With RAG file uploads, you can't work with structured data like spreadsheets or tables, and you can't perform full summarization due to lack of full context. In some cases, you might want to include all the file content directly in the prompt for an LLM, especially with models like Gemini and Claude that have longer context windows. This research paper is one of many that compare RAG with longer context windows.

To enable full file uploads, go to Chatflow Configuration, open the File Upload tab, and click the switch:

You can see the File Attachment button in the chat, where you can upload one or more files. Under the hood, the File Loader processes each file and converts it into text.

Note that if your chatflow uses a Chat Prompt Template node, an input must be created from Format Prompt Values to pass the file data. The specified input name (e.g. {file}) should be included in the Human Message field.

To upload files with the API:

import requests
API_URL = "http://localhost:3000/api/v1/prediction/<chatflowid>"

def query(payload):
    response = requests.post(API_URL, json=payload)
    return response.json()
    
output = query({
    "question": "What is the data about?",
    "chatId": "some-session-id",
    "uploads": [
        {
            "data": "data:text/plain;base64,TWFkYWwcy4=",
            "type": "file:full",
            "name": "state_of_the_union.txt",
            "mime": "text/plain"
        }
    ]
})
async function query(data) {
    const response = await fetch(
        "http://localhost:3000/api/v1/prediction/<chatflowid>",
        {
            method: "POST",
            headers: {
                "Content-Type": "application/json"
            },
            body: JSON.stringify(data)
        }
    );
    const result = await response.json();
    return result;
}

query({
    "question": "What is the data about?",
    "chatId": "some-session-id",
    "uploads": [
        {
            "data": "data:text/plain;base64,TWFkYWwcy4=",
            "type": "file:full",
            "name": "state_of_the_union.txt",
            "mime": "text/plain"
        }
    ]
}).then((response) => {
    console.log(response);
});

As you can see in the examples, uploads require a base64 string. To get a base64 string for a file, use the Create Attachments API.

Difference between Full & RAG Uploads

Both Full and RAG (Retrieval-Augmented Generation) file uploads serve different purposes.

  • Full File Upload: This method parses the entire file into a string and sends it to the LLM (Large Language Model). It's beneficial for summarizing the document or extracting key information. However, with very large files, the model might produce inaccurate results or "hallucinations" due to token limitations.

  • RAG File Upload: Recommended if you aim to reduce token costs by not sending the entire text to the LLM. This approach is suitable for Q&A tasks on the documents but isn't ideal for summarization since it lacks the full document context. This approach might takes longer time because of the upsert process.