FlowiseAI
English
English
  • Introduction
  • Get Started
  • Contribution Guide
    • Building Node
  • API Reference
    • Assistants
    • Attachments
    • Chat Message
    • Chatflows
    • Document Store
    • Feedback
    • Leads
    • Ping
    • Prediction
    • Tools
    • Upsert History
    • Variables
    • Vector Upsert
  • Using Flowise
    • Agentflow V2
    • Agentflow V1 (Deprecating)
      • Multi-Agents
      • Sequential Agents
        • Video Tutorials
    • API
    • Analytic
      • Arize
      • Langfuse
      • Lunary
      • Opik
      • Phoenix
    • Document Stores
    • Embed
    • Monitoring
    • Streaming
    • Uploads
    • Variables
    • Workspaces
    • Evaluations
  • Configuration
    • Auth
      • Application
      • Flows
    • Databases
    • Deployment
      • AWS
      • Azure
      • Alibaba Cloud
      • Digital Ocean
      • Elestio
      • GCP
      • Hugging Face
      • Kubernetes using Helm
      • Railway
      • Render
      • Replit
      • RepoCloud
      • Sealos
      • Zeabur
    • Environment Variables
    • Rate Limit
    • Running Flowise behind company proxy
    • SSO
    • Running Flowise using Queue
    • Running in Production
  • Integrations
    • LangChain
      • Agents
        • Airtable Agent
        • AutoGPT
        • BabyAGI
        • CSV Agent
        • Conversational Agent
        • Conversational Retrieval Agent
        • MistralAI Tool Agent
        • OpenAI Assistant
          • Threads
        • OpenAI Function Agent
        • OpenAI Tool Agent
        • ReAct Agent Chat
        • ReAct Agent LLM
        • Tool Agent
        • XML Agent
      • Cache
        • InMemory Cache
        • InMemory Embedding Cache
        • Momento Cache
        • Redis Cache
        • Redis Embeddings Cache
        • Upstash Redis Cache
      • Chains
        • GET API Chain
        • OpenAPI Chain
        • POST API Chain
        • Conversation Chain
        • Conversational Retrieval QA Chain
        • LLM Chain
        • Multi Prompt Chain
        • Multi Retrieval QA Chain
        • Retrieval QA Chain
        • Sql Database Chain
        • Vectara QA Chain
        • VectorDB QA Chain
      • Chat Models
        • AWS ChatBedrock
        • Azure ChatOpenAI
        • NVIDIA NIM
        • ChatAnthropic
        • ChatCohere
        • Chat Fireworks
        • ChatGoogleGenerativeAI
        • Google VertexAI
        • ChatHuggingFace
        • ChatLocalAI
        • ChatMistralAI
        • IBM Watsonx
        • ChatOllama
        • ChatOpenAI
        • ChatTogetherAI
        • GroqChat
      • Document Loaders
        • API Loader
        • Airtable
        • Apify Website Content Crawler
        • Cheerio Web Scraper
        • Confluence
        • Csv File
        • Custom Document Loader
        • Document Store
        • Docx File
        • File Loader
        • Figma
        • FireCrawl
        • Folder with Files
        • GitBook
        • Github
        • Json File
        • Json Lines File
        • Notion Database
        • Notion Folder
        • Notion Page
        • PDF Files
        • Plain Text
        • Playwright Web Scraper
        • Puppeteer Web Scraper
        • S3 File Loader
        • SearchApi For Web Search
        • SerpApi For Web Search
        • Spider Web Scraper/Crawler
        • Text File
        • Unstructured File Loader
        • Unstructured Folder Loader
        • VectorStore To Document
      • Embeddings
        • AWS Bedrock Embeddings
        • Azure OpenAI Embeddings
        • Cohere Embeddings
        • Google GenerativeAI Embeddings
        • Google VertexAI Embeddings
        • HuggingFace Inference Embeddings
        • LocalAI Embeddings
        • MistralAI Embeddings
        • Ollama Embeddings
        • OpenAI Embeddings
        • OpenAI Embeddings Custom
        • TogetherAI Embedding
        • VoyageAI Embeddings
      • LLMs
        • AWS Bedrock
        • Azure OpenAI
        • Cohere
        • GoogleVertex AI
        • HuggingFace Inference
        • Ollama
        • OpenAI
        • Replicate
      • Memory
        • Buffer Memory
        • Buffer Window Memory
        • Conversation Summary Memory
        • Conversation Summary Buffer Memory
        • DynamoDB Chat Memory
        • MongoDB Atlas Chat Memory
        • Redis-Backed Chat Memory
        • Upstash Redis-Backed Chat Memory
        • Zep Memory
      • Moderation
        • OpenAI Moderation
        • Simple Prompt Moderation
      • Output Parsers
        • CSV Output Parser
        • Custom List Output Parser
        • Structured Output Parser
        • Advanced Structured Output Parser
      • Prompts
        • Chat Prompt Template
        • Few Shot Prompt Template
        • Prompt Template
      • Record Managers
      • Retrievers
        • Extract Metadata Retriever
        • Custom Retriever
        • Cohere Rerank Retriever
        • Embeddings Filter Retriever
        • HyDE Retriever
        • LLM Filter Retriever
        • Multi Query Retriever
        • Prompt Retriever
        • Reciprocal Rank Fusion Retriever
        • Similarity Score Threshold Retriever
        • Vector Store Retriever
        • Voyage AI Rerank Retriever
      • Text Splitters
        • Character Text Splitter
        • Code Text Splitter
        • Html-To-Markdown Text Splitter
        • Markdown Text Splitter
        • Recursive Character Text Splitter
        • Token Text Splitter
      • Tools
        • BraveSearch API
        • Calculator
        • Chain Tool
        • Chatflow Tool
        • Custom Tool
        • Exa Search
        • Google Custom Search
        • OpenAPI Toolkit
        • Code Interpreter by E2B
        • Read File
        • Request Get
        • Request Post
        • Retriever Tool
        • SearchApi
        • SearXNG
        • Serp API
        • Serper
        • Tavily
        • Web Browser
        • Write File
      • Vector Stores
        • AstraDB
        • Chroma
        • Couchbase
        • Elastic
        • Faiss
        • In-Memory Vector Store
        • Milvus
        • MongoDB Atlas
        • OpenSearch
        • Pinecone
        • Postgres
        • Qdrant
        • Redis
        • SingleStore
        • Supabase
        • Upstash Vector
        • Vectara
        • Weaviate
        • Zep Collection - Open Source
        • Zep Collection - Cloud
    • LiteLLM Proxy
    • LlamaIndex
      • Agents
        • OpenAI Tool Agent
        • Anthropic Tool Agent
      • Chat Models
        • AzureChatOpenAI
        • ChatAnthropic
        • ChatMistral
        • ChatOllama
        • ChatOpenAI
        • ChatTogetherAI
        • ChatGroq
      • Embeddings
        • Azure OpenAI Embeddings
        • OpenAI Embedding
      • Engine
        • Query Engine
        • Simple Chat Engine
        • Context Chat Engine
        • Sub-Question Query Engine
      • Response Synthesizer
        • Refine
        • Compact And Refine
        • Simple Response Builder
        • Tree Summarize
      • Tools
        • Query Engine Tool
      • Vector Stores
        • Pinecone
        • SimpleStore
    • Utilities
      • Custom JS Function
      • Set/Get Variable
      • If Else
      • Sticky Note
    • External Integrations
      • Zapier Zaps
  • Migration Guide
    • Cloud Migration
    • v1.3.0 Migration Guide
    • v1.4.3 Migration Guide
    • v2.1.4 Migration Guide
  • Use Cases
    • Calling Children Flows
    • Calling Webhook
    • Interacting with API
    • Multiple Documents QnA
    • SQL QnA
    • Upserting Data
    • Web Scrape QnA
  • Flowise
    • Flowise GitHub
    • Flowise Cloud
Powered by GitBook
On this page
  • Prerequisite
  • Requirements
  • Importing Search Index
  • Index Definition
  • Setup
  • Resources
Edit on GitHub
  1. Integrations
  2. LangChain
  3. Vector Stores

Couchbase

Upsert embedded data and perform vector search upon query using Couchbase, a NoSQL cloud developer data platform for critical, AI-powered applications.

PreviousChromaNextElastic

Last updated 3 months ago

Prerequisite

Requirements

  1. Couchbase Cluster (Self Managed or Capella) version 7.6+ with .

  2. Capella Setup: To know more about connecting to your Capella cluster, please follow the .

    Specifically, you need to do the following:

    • Create the to access cluster.

    • to the Cluster from the IP on which the application is running.

    Self Managed Setup:

    • Follow for installing the latest Couchbase Database Server Instance. Make sure to add the Search Service.

  3. Search Index Creation on the Full Text Service in Couchbase.

Importing Search Index

Follow these steps to import a Search Index in Capella:

  • Copy the index definition to a new file named index.json.

  • Import the file in Capella following the instructions in the documentation.

  • Click Create Index to finalize the index creation.

Follow these steps for Couchbase Server:

  • Navigate to Search → Add Index → Import.

  • Copy the provided Index definition into the Import screen.

  • Click Create Index to finalize the index creation.

Index Definition

Here, we are creating the index vector-index on the documents. The Vector field is set to embedding with 1536 dimensions and the text field set to text. We are also indexing and storing all the fields under metadata in the document as a dynamic mapping to account for varying document structures. The similarity metric is set to dot_product. If there is a change in these parameters, please adapt the index accordingly.

{
  "name": "vector-index",
  "type": "fulltext-index",
  "params": {
    "doc_config": {
      "docid_prefix_delim": "",
      "docid_regexp": "",
      "mode": "scope.collection.type_field",
      "type_field": "type"
    },
    "mapping": {
      "default_analyzer": "standard",
      "default_datetime_parser": "dateTimeOptional",
      "default_field": "_all",
      "default_mapping": {
        "dynamic": true,
        "enabled": false
      },
      "default_type": "_default",
      "docvalues_dynamic": false,
      "index_dynamic": true,
      "store_dynamic": false,
      "type_field": "_type",
      "types": {
        "_default._default": {
          "dynamic": true,
          "enabled": true,
          "properties": {
            "embedding": {
              "enabled": true,
              "dynamic": false,
              "fields": [
                {
                  "dims": 1536,
                  "index": true,
                  "name": "embedding",
                  "similarity": "dot_product",
                  "type": "vector",
                  "vector_index_optimized_for": "recall"
                }
              ]
            },
            "metadata": {
              "dynamic": true,
              "enabled": true
            },
            "text": {
              "enabled": true,
              "dynamic": false,
              "fields": [
                {
                  "index": true,
                  "name": "text",
                  "store": true,
                  "type": "text"
                }
              ]
            }
          }
        }
      }
    },
    "store": {
      "indexType": "scorch",
      "segmentVersion": 16
    }
  },
  "sourceType": "gocbcore",
  "sourceName": "pdf-chat",
  "sourceParams": {},
  "planParams": {
    "maxPartitionsPerPIndex": 64,
    "indexPartitions": 16,
    "numReplicas": 0
  }
}

Setup

  1. Add a new Couchbase node on canvas and fill in the Bucket Name, Scope Name, Collection Name and Index Name

  1. Add new credential and fill in the parameters:

    • Couchbase Connection String

    • Cluster Username

    • Cluster Password

  1. Add additional nodes to canvas and start the upsert process

  1. Verify from the Couchbase UI to see if data has been successfully upserted!

Resources

  • LangChain Couchbase vectorstore integrations

You may also create a vector index using Search UI on both and .

Document can be connected with any node under category

Embeddings can be connected with any node under category

Refer to the to learn about Couchbase.

Search Service
instructions
database credentials
Allow access
Couchbase Installation Options
Couchbase Capella
Couchbase Server
Couchbase Capella
Couchbase Self Managed Server
Document Loader
Embeddings
Python
NodeJS
Couchbase Documentation