FlowiseAI
English
English
  • Introduction
  • Get Started
  • Contribution Guide
    • Building Node
  • API Reference
    • Assistants
    • Attachments
    • Chat Message
    • Chatflows
    • Document Store
    • Feedback
    • Leads
    • Ping
    • Prediction
    • Tools
    • Upsert History
    • Variables
    • Vector Upsert
  • Using Flowise
    • Agentflow V2
    • Agentflow V1 (Deprecating)
      • Multi-Agents
      • Sequential Agents
        • Video Tutorials
    • API
    • Analytic
      • Arize
      • Langfuse
      • Lunary
      • Opik
      • Phoenix
    • Document Stores
    • Embed
    • Monitoring
    • Streaming
    • Uploads
    • Variables
    • Workspaces
    • Evaluations
  • Configuration
    • Auth
      • App Level
      • Chatflow Level
    • Databases
    • Deployment
      • AWS
      • Azure
      • Alibaba Cloud
      • Digital Ocean
      • Elestio
      • GCP
      • Hugging Face
      • Kubernetes using Helm
      • Railway
      • Render
      • Replit
      • RepoCloud
      • Sealos
      • Zeabur
    • Environment Variables
    • Rate Limit
    • Running Flowise behind company proxy
    • SSO
    • Running Flowise using Queue
    • Running in Production
  • Integrations
    • LangChain
      • Agents
        • Airtable Agent
        • AutoGPT
        • BabyAGI
        • CSV Agent
        • Conversational Agent
        • Conversational Retrieval Agent
        • MistralAI Tool Agent
        • OpenAI Assistant
          • Threads
        • OpenAI Function Agent
        • OpenAI Tool Agent
        • ReAct Agent Chat
        • ReAct Agent LLM
        • Tool Agent
        • XML Agent
      • Cache
        • InMemory Cache
        • InMemory Embedding Cache
        • Momento Cache
        • Redis Cache
        • Redis Embeddings Cache
        • Upstash Redis Cache
      • Chains
        • GET API Chain
        • OpenAPI Chain
        • POST API Chain
        • Conversation Chain
        • Conversational Retrieval QA Chain
        • LLM Chain
        • Multi Prompt Chain
        • Multi Retrieval QA Chain
        • Retrieval QA Chain
        • Sql Database Chain
        • Vectara QA Chain
        • VectorDB QA Chain
      • Chat Models
        • AWS ChatBedrock
        • Azure ChatOpenAI
        • NVIDIA NIM
        • ChatAnthropic
        • ChatCohere
        • Chat Fireworks
        • ChatGoogleGenerativeAI
        • Google VertexAI
        • ChatHuggingFace
        • ChatLocalAI
        • ChatMistralAI
        • IBM Watsonx
        • ChatOllama
        • ChatOpenAI
        • ChatTogetherAI
        • GroqChat
      • Document Loaders
        • API Loader
        • Airtable
        • Apify Website Content Crawler
        • Cheerio Web Scraper
        • Confluence
        • Csv File
        • Custom Document Loader
        • Document Store
        • Docx File
        • File Loader
        • Figma
        • FireCrawl
        • Folder with Files
        • GitBook
        • Github
        • Json File
        • Json Lines File
        • Notion Database
        • Notion Folder
        • Notion Page
        • PDF Files
        • Plain Text
        • Playwright Web Scraper
        • Puppeteer Web Scraper
        • S3 File Loader
        • SearchApi For Web Search
        • SerpApi For Web Search
        • Spider Web Scraper/Crawler
        • Text File
        • Unstructured File Loader
        • Unstructured Folder Loader
        • VectorStore To Document
      • Embeddings
        • AWS Bedrock Embeddings
        • Azure OpenAI Embeddings
        • Cohere Embeddings
        • Google GenerativeAI Embeddings
        • Google VertexAI Embeddings
        • HuggingFace Inference Embeddings
        • LocalAI Embeddings
        • MistralAI Embeddings
        • Ollama Embeddings
        • OpenAI Embeddings
        • OpenAI Embeddings Custom
        • TogetherAI Embedding
        • VoyageAI Embeddings
      • LLMs
        • AWS Bedrock
        • Azure OpenAI
        • Cohere
        • GoogleVertex AI
        • HuggingFace Inference
        • Ollama
        • OpenAI
        • Replicate
      • Memory
        • Buffer Memory
        • Buffer Window Memory
        • Conversation Summary Memory
        • Conversation Summary Buffer Memory
        • DynamoDB Chat Memory
        • MongoDB Atlas Chat Memory
        • Redis-Backed Chat Memory
        • Upstash Redis-Backed Chat Memory
        • Zep Memory
      • Moderation
        • OpenAI Moderation
        • Simple Prompt Moderation
      • Output Parsers
        • CSV Output Parser
        • Custom List Output Parser
        • Structured Output Parser
        • Advanced Structured Output Parser
      • Prompts
        • Chat Prompt Template
        • Few Shot Prompt Template
        • Prompt Template
      • Record Managers
      • Retrievers
        • Extract Metadata Retriever
        • Custom Retriever
        • Cohere Rerank Retriever
        • Embeddings Filter Retriever
        • HyDE Retriever
        • LLM Filter Retriever
        • Multi Query Retriever
        • Prompt Retriever
        • Reciprocal Rank Fusion Retriever
        • Similarity Score Threshold Retriever
        • Vector Store Retriever
        • Voyage AI Rerank Retriever
      • Text Splitters
        • Character Text Splitter
        • Code Text Splitter
        • Html-To-Markdown Text Splitter
        • Markdown Text Splitter
        • Recursive Character Text Splitter
        • Token Text Splitter
      • Tools
        • BraveSearch API
        • Calculator
        • Chain Tool
        • Chatflow Tool
        • Custom Tool
        • Exa Search
        • Google Custom Search
        • OpenAPI Toolkit
        • Code Interpreter by E2B
        • Read File
        • Request Get
        • Request Post
        • Retriever Tool
        • SearchApi
        • SearXNG
        • Serp API
        • Serper
        • Tavily
        • Web Browser
        • Write File
      • Vector Stores
        • AstraDB
        • Chroma
        • Couchbase
        • Elastic
        • Faiss
        • In-Memory Vector Store
        • Milvus
        • MongoDB Atlas
        • OpenSearch
        • Pinecone
        • Postgres
        • Qdrant
        • Redis
        • SingleStore
        • Supabase
        • Upstash Vector
        • Vectara
        • Weaviate
        • Zep Collection - Open Source
        • Zep Collection - Cloud
    • LiteLLM Proxy
    • LlamaIndex
      • Agents
        • OpenAI Tool Agent
        • Anthropic Tool Agent
      • Chat Models
        • AzureChatOpenAI
        • ChatAnthropic
        • ChatMistral
        • ChatOllama
        • ChatOpenAI
        • ChatTogetherAI
        • ChatGroq
      • Embeddings
        • Azure OpenAI Embeddings
        • OpenAI Embedding
      • Engine
        • Query Engine
        • Simple Chat Engine
        • Context Chat Engine
        • Sub-Question Query Engine
      • Response Synthesizer
        • Refine
        • Compact And Refine
        • Simple Response Builder
        • Tree Summarize
      • Tools
        • Query Engine Tool
      • Vector Stores
        • Pinecone
        • SimpleStore
    • Utilities
      • Custom JS Function
      • Set/Get Variable
      • If Else
      • Sticky Note
    • External Integrations
      • Zapier Zaps
  • Migration Guide
    • Cloud Migration
    • v1.3.0 Migration Guide
    • v1.4.3 Migration Guide
    • v2.1.4 Migration Guide
  • Use Cases
    • Calling Children Flows
    • Calling Webhook
    • Interacting with API
    • Multiple Documents QnA
    • SQL QnA
    • Upserting Data
    • Web Scrape QnA
  • Flowise
    • Flowise GitHub
    • Flowise Cloud
Powered by GitBook
On this page
  • Setting Up a Webhook in Make.com
  • Creating a Webhook Tool in FlowiseAI
  • Step 1: Add a New Tool
  • Step 2: Add Webhook Request Logic
  • Step 3: Build a Chatflow with Webhook Integration
  • Step 4: Sending Messages via Webhook
  • Alternative Webhook Testing Tools
  • More Tutorials
Edit on GitHub
  1. Use Cases

Calling Webhook

Learn how to call a webhook on Make

PreviousCalling Children FlowsNextInteracting with API

Last updated 2 months ago


This tutorial walks you through creating a custom tool in FlowiseAI that calls a webhook endpoint, passing the necessary parameters in the request body. We will use to set up a webhook workflow that sends messages to a Discord channel.

Setting Up a Webhook in Make.com

  1. Sign up or log in to .

  2. Create a new workflow containing a Webhook module and a Discord module, as shown below:

  3. From the Webhook module, copy the webhook URL:

  4. In the Discord module, configure it to pass the message from the webhook body as the message sent to the Discord channel:

  5. Click Run Once to start listening for incoming requests.

  6. Send a test POST request with the following JSON body:

    {
        "message": "Hello Discord!"
    }
  7. If successful, you will see the message appear in your Discord channel:

Congratulations! You have successfully set up a webhook workflow that sends messages to Discord. 🎉

Creating a Webhook Tool in FlowiseAI

Next, we will create a custom tool in FlowiseAI to send webhook requests.

Step 1: Add a New Tool

  1. Open the FlowiseAI dashboard.

  2. Click Tools, then select Create.

  3. Fill in the following fields:

    Field
    Value

    Tool Name

    make_webhook (must be in snake_case)

    Tool Description

    Useful when you need to send messages to Discord

    Tool Icon Src

  4. Define the Input Schema:

Step 2: Add Webhook Request Logic

Enter the following JavaScript function:

const fetch = require('node-fetch');
const webhookUrl = 'https://hook.eu1.make.com/abcdef';
const body = {
    "message": $message
};
const options = {
    method: 'POST',
    headers: {
        'Content-Type': 'application/json'
    },
    body: JSON.stringify(body)
};
try {
    const response = await fetch(webhookUrl, options);
    const text = await response.text();
    return text;
} catch (error) {
    console.error(error);
    return '';
}
  1. Click Add to save your custom tool.

Step 3: Build a Chatflow with Webhook Integration

  1. Create a new canvas and add the following nodes:

    • Buffer Memory

    • ChatOpenAI

    • Custom Tool (select make_webhook)

    • OpenAI Function Agent

  2. Connect them as shown:

  3. Save the chatflow and start testing it.

Step 4: Sending Messages via Webhook

Try asking the chatbot a question like:

"How to cook an egg?"

Then, request the agent to send this information to Discord:

You should see the message appear in your Discord channel:

Alternative Webhook Testing Tools

If you want to test webhooks without Make.com, consider using:

More Tutorials

  • Watch a step-by-step guide on using webhooks with Flowise custom tools:

  • Learn how to connect Flowise to Google Sheets using webhooks:

  • Learn how to connect Flowise to Microsoft Excel using webhooks:

By following this guide, you can trigger webhook workflows dynamically and extend automation to various services like Gmail, Google Sheets, and more.

– Quickly set up a mock API endpoint.

– Inspect and debug HTTP requests in real-time.

– Capture and analyze incoming webhooks.

Beeceptor
Webhook.site
Pipedream RequestBin
Flowise Tool Icon
Make.com
Make.com
Workflow example
Webhook URL
Discord module setup
Sending POST request
Discord message
Creating tool in FlowiseAI
Input schema example
Tool added confirmation
Chatflow setup
Sending message via agent
Final message in Discord